
Computer programming (STQS1313)

Sem 2, Session 2020/2021

Notes - Functions/modules (building blocks)

1) Introduction to function

 C++ program is a collection of functions/modules/building blocks.

 The programs that you have written packed all programming instructions into one

function.

 This technique is good only for short programs.

 It is not practical for long codes → for large programs, we need to break the problem

into manageable pieces.

 Eg: a car,

 each major car component can be compared to a function.

 the engine, transmission, and other modules know only their inputs and outputs

 the driver doesn’t need to know the internal operation of the modules

2) Why do we use functions?

 can focus on a specific function at one time (to construct/write, to debug, to perfect it)

 different people can work on different functions simultaneously (but they have to know

the details (type, input, output etc) of their functions)

 we only need to write the function once in the code although it is going to be used many

times (you are going to see this once you learn arrays/vectors/matrices).

 Enhance a program’s readability, because it reduces the complexity of the main function.

3) Types of function

 predefined functions: need libraries such as the cmath

 user-defined functions (value-returning functions and void functions): because C++

doesn’t know every possible functions that you need → need to write your own

functions.

4) How to use a function

 three components: function declaration (prototype), function definition (function

header and body), function call

 Writing function declaration (prototype)

 Can be placed within the main function, or before or after the #include<>. Usually

we put it after the include<>.

 gives information on function’s/output’s type, function’s name,

parameters/arguments’ names and types, number of parameters. Don’t forget the

semi colon.

 Syntax: returnDataType functionName(list or argument data types);

 Example:

 int addfun(int x, int y);

 double multfun(double x, double y);

 void display(double a, double b);

 void printline(); ← function with empty parameter list

 Writing function definition
 Can be placed before or after the main function. Usually after the main function.

 Two main parts: function header and function body

 The first line is the function header. It is similar to the function declaration/prototype

except that it has no semi colon.

 The variables are called formal parameters.

 Writing function call

 needs to be placed in the main function

 Syntax: functionName(list or actual parameters);

 Note, now it is the actual parameters.

5) Example of full function code to calculate the sum of two numbers:

#include<iostream>
using namespace std;
int addfun(int x, int y); // (1) Function Prototype/Declaration
int main()
{

int a, b, c;
a = 1;
b = 2;
c = addfun(a, b); // (3) Function call

 cout << "The sum of the two numbers is: " << c << endl;
return 0;

}
// (2) Function definition

int addfun(int x, int y) // Function header
{

 // Function body

 int z;

z = x + y;
return z;

}
 Note: the value of the actual parameters a and b (1 and 2) are passed to the formal

 parameters: x and y (this is called pass by value).

6) Example of full function code to find the maximum of two numbers:

#include<iostream>

using namespace std;

int findMax(int, int); // (1) Function Prototype/Declaration

int main()

{

 int x, y, z;

 cout << "Please enter first number: ";

 cin >> x;

 cout << "\nPlease enter second number: ";

 cin >> y;

 z = findMax(x,y); // (3) Function call

 cout << "\nThe larger number is " << z << endl;

 return 0;

}

// (2) Function definition

int findMax(int a, int b) // Function header

{

// Function body

 int c;

 if (a>b)

 c = a;

 else

 c = b;

 return c;

}

 Note: the value of the actual parameters x and y are passed to the formal

 parameters: a and b (pass by value).

7) Functions usually return a single value only → returning multiple values will be covered in

the pass by reference.

8) What can be done to the output of a function?

 save the value (as shown above): c = addfun(a, b);. We have seen this in our previous

programs.

 print the value: cout << "The sum of the two numbers is " << addfun(a, b);.

For example:

#include<iostream>
using namespace std;
int addfun(int x, int y);
int main()
{

int a, b;
a = 1;
b = 2;

 cout << "The sum of the two numbers is: " << addfun(a,b) << endl;
return 0;

}

int addfun(int x, int y)
{

 int z;

 z = x + y;
return z;

}

 where we have removed c in the main function since it is not needed.

 use the value in some calculation: c = 2*addfun(a, b);. For example:

#include<iostream>
using namespace std;
int addfun(int x, int y);
int main()
{

int a, b, c;
a = 1;
b = 2;

c = 2*addfun(a,b);
 cout << "The sum of the two numbers when doubled is: " << c << endl;

return 0;
}

int addfun(int x, int y)
{

 int z;

 z = x + y;

return z;
}

9) Two types of user-defined functions

 value-returning functions. We have seen this in all previous programs where each

called function returns a value to the main function.

 void functions. Here, the called function will not return any value to the main function.

 Example (Code 16)

#include<iostream>

using namespace std;

void addFun(int, int); // (1) Function Prototype/Declaration

int main()

{

 int a, b;

 a = 1;

 b = 2;

addFun(a,b); // (3) Function call

 return 0;

}

// (2) Function definition

void addFun(int x, int y) // Function header

{

 // Function body

 int z;

z = x + y;
 cout << "\nThe sum of the two numbers is " << z << endl;

}

 Note that the function call does not have a variable c as a placeholder to hold the

returned value from the function, since there is no value returned by the function at

the first place.

 Note also that the command to print the summation is now placed in the void

function, not in the main function.

10) Functions with empty parameter lists.

 Example (Code 17)

#include<iostream>

using namespace std;

// void function = no return value, 2) empty parameter list = no input

void printLine();

int main()

{

 printLine(); // Function call

 cout << "Fakulti Sains dan Teknologi" << endl;

 printLine(); // Function call

 return 0;

}

void printLine()

{

 cout << "===========================" << endl;

}

 Note that the void function with empty parameter list named printLine is used twice in

the program.

 Example (Code 17)

#include<iostream>

using namespace std;

void printLine();

void printLine2();

int main()

{

 printLine();

 cout << "Fakulti Sains dan Teknologi" << endl;

 printLine2();

 return 0;

}

void printLine()

{

 cout << "===========================" << endl;

}

void printLine2()

{

 cout << "***************************" << endl;

}

 Note that there are two void functions with empty parameter list named printLine and

printLine2 used in the program.

11) Local variable and global variable

 variable defined in a function is local:

 can be used and changed in that particular function only

 not accessible to other functions

 that’s why we have separate declaration, and need to return value.

 Example (see Code 19b)

#include<iostream>

using namespace std;

void myFun(); // void function with empty argument

int main()

{

 int a;

 a = 3;

 cout << "The value of a in main() is " << a << endl;

 myFun();

 cout << "The value of a in main() after changed by myFun() is "

 << a << endl;

 return 0;

}

void myFun()

{

 int a;

 a = 2;

 cout << "The value of a in myFun() is " << a << endl;

}

 global variable is defined outside any function → can be used and changed in any

function.

 Example of global variable: See Codes 20, 21 and 22.

#include<iostream>

using namespace std;

void myFun(); // void function with no argument

int a=1; // global variable

int main()

{

 cout << "The value of a is " << a << endl;

 a = 3;

 cout << "The value of a is " << a << endl;

 myFun();

 cout << "The value of a is " << a << endl;

 return 0;

}

void myFun()

{

 a = 2;

 cout << "The value of a is " << a << endl;

}

12) Misuse of global variables

 It’s possible to make all variables global.

 But DO NOT DO THIS, because it could be disastrous for large programs, where there

are a lot of variables, and user-defined functions → you might not reliase which values

are controlled globally.

13) Scope resolution operator

 when the name of a variable is declared twice: locally and globally.

 Here, the local variable of a function name takes precedence over the global variable in

its function.

 we can still access the global variable by using the scope resolution operator ::, placed

immediately before the variable name.

 Example (Code 23)

#include<iostream>

using namespace std;

int a = 1; // declared as global variable

int main()

{

 int a = 2; // declared as local variable

 cout << "The value of a is " << a << endl;

 return 0;

}

 Example (Code 24)

#include<iostream>

using namespace std;

int a = 1; // declared as global variable

int main()

{

 int a = 2; // declared as local variable

 cout << "The local value of num is " << a << endl; // local

 cout << "The global value of num is " << ::a << endl; // global

 return 0;

}

14) Stub function

 a fake/dummy function

 created because you haven’t finalised/completed writing your function (definition)

 used as placeholder for the final function until it’s completed

 minimum requirement: a stub function can be compiled and linked to the calling

module/code/function.

 Example: Code 25

15) Function overloading and function templates: please read.

16) Returning a single value

 Typical function: the called function receives values from its calling function, and

returns at most one value (of course the function will do some manipulation on the

values before returning it).

 This is called pass by value.

17) Returning multiple values

 can be done by passing the variable’s address in the calling function to the called

functions.

 This will allow the called function to use and change the value of variables defined in

the calling function.

 Passing addresses is referred to as pass by reference.

 Related topic: pointer.

18) Pass by reference

 method: call a function, and pass an address of a variable.

 How to pass: use & operator at function prototype and function header.

 &: “the address of”

 Take a look at Code27:

#include<iostream>

using namespace std;

void newval(double&,double&); // (1) Function declaration

int main()

{

 double x, y;

 cout << "Please enter two numbers: ";

 cin >> x >> y;

 cout << "The value in x is: " << x << endl

 << "The value in y is: " << y << endl;

 newval(x,y); // (3) Function call

 cout << endl;

 cout << "The value in x is: " << x << endl

 << "The value in y is: " << y << endl;

 return 0;

}

void newval(double& a,double& b) // (2) Function definition

{

 a = 2; // x

 b = 1; // y

}

 Function header

void newval(double& a, double& b)

 “a is a reference parameter used to store the address of a double-precision

value”, and similarly “b is a reference parameter used to store the address of a

double-precision value”;

 Function call

newval(x,y)

 connects the arguments used in the function call of the main function, x and y, and

the parameters used in the header of the newval function, a and b.

 The values in the arguments x and y can now be altered from within by using the

reference parameters a and b.

 The parameters a and b don’t store copies of the values in x and y; instead, they

access the locations in memory set aside for these two arguments.

 The value of more than one variable is affected, so the function can’t be written as a pass

by value function (that only returns a single value).

 Take a look at another example (Code 28):

 #include<iostream>

using namespace std;

void calc(double, double, double&, double&); // (1) Function declaration

int main()

{

 double x, y, sum, prod;

 cout << "Enter two numbers: ";

 cin >> x >> y;

 calc(x, y, sum, prod); // (3) Function call

cout << "\nThe sum of the numbers is: " << sum << endl;

 cout << "The product of the numbers is: " << prod << endl;

 return 0;

}

// (2) Function definition

void calc(double a, double b, double& m, double& n)

{

 m = a + b;

 n = a*b;

}

 In main(), the calc() function is called with four arguments: x, y, sum, and prod. As

required, these arguments agree in number and data type with the parameters declared by

calc(). Of the four arguments passed, only x and y have been assigned values when the

call to calc() is made. The remaining two arguments, sum, and prod, haven’t been

initialized and are used to receive values back from calc().

 Depending on the compiler used, these arguments initially contain zeros or “garbage”

values.

Exercises

1) Write a function that returns the smaller value between x, y

2) Modify question 2 so that the value of x and y are entered when the program is running.

3) Modify question 2 so that we can repeat it for n times (determined by user, for example, n=3).

4) Modify question 2 to determine the smallest between 3 values.

5) Write parameter declarations for the following

a) A parameter named amount that will be a reference to a double-precision value.

b) A parameter named price that will be a reference to a double-precision number.

c) A parameter named minutes that will be a reference to an integer number.

d) A parameter named key that will be a reference to a character.

e) A parameter named yield that will be a reference to a double-precision number.

6) Using reference parameters, write a C++ program that contains a function named time() to

convert the passed number of seconds into an equivalent number of minutes and seconds.

