
A First Book of C++

Chapter 15

Strings as Character Arrays

Objectives

• In this chapter, you will learn about:

– C-String Fundamentals

– Pointers and C-String Library Functions

– C-String Definitions and Pointer Arrays

– Common Programming Errors

A First Book of C++ 4th Edition 2

C-String Fundamentals

• Character strings (C-strings): using an array of
characters that is terminated by a sentinel value (the
escape sequence '\0’)

• C-strings can be created in a number of ways:

– char test[5] = “abcd”;

– char test[] = “abcd”;

– char test[5] = {'a', 'b', 'c', 'd',

'\0'};

– char test[] = {'a', 'b', 'c', 'd',

'\0'};

A First Book of C++ 4th Edition 3

C-String Fundamentals (cont'd.)

• Array of characters terminated by a special end-of-
string marker called the NULL character

– This character is a sentinel marking the end of the

string

– The NULL character is represented by the escape

sequence,\0

• Individual characters in a string array can be input,

manipulated, or output using standard array-

handling techniques

A First Book of C++ 4th Edition 4

C-String Input and Output

• Inputting and displaying a string requires a standard

library function or class method:

– cin and cout (standard input and output streams)

– String and character I/O functions (Table 15.1)

• Require the iostream header file

• Character input methods are not the same as
methods defined for the string class having the

same name

• Character output methods are the same as for
string class

A First Book of C++ 4th Edition 5

C-string Input and Output (cont'd.)

A First Book of C++ 4th Edition 6

C-String Input and Output (cont'd.)

A First Book of C++ 4th Edition 7

C-String Input and Output (cont'd.)

• Program 15.1 illustrates using cin.getline() and

cout to input and output a string entered at the

user’s terminal

– Sample run of Program 15.1:

Enter a string:

This is a test input of a string of characters.

The string just entered is:

This is a test input of a string of characters.

A First Book of C++ 4th Edition 8

C-String Input and Output (cont'd.)

• The cin.getline() method in Program 15.1

continuously accepts and stores characters into
character array named message

– Input continues until:

• Either 80 characters are entered

• The ENTER key is detected

A First Book of C++ 4th Edition 9

C-String Input and Output (cont'd.)

• In Program 15.1, all characters encountered by
cin.getline(), except newline character, are

stored in message array

• Before returning, cin.getline() function

appends a NULL character, '\0', to the stored set

of characters (Figure 15.2)

• cout object is used to display the C-string

A First Book of C++ 4th Edition 10

C-String Processing

• C-strings can be manipulated by using either
standard library functions or as subscripted array
variables

– Library functions are presented in the next section

• First look at processing a string in a character-by-
character fashion

– Example: strcopy() copies contents of string2 to
string1

A First Book of C++ 4th Edition 11

C-String Processing (cont'd.)

• Function strcopy()

// copy string2 to string1

void strcopy(char string1[], char string2[])

{

int i = 0;

while (string2[i] != '\0')

{

string1[i] = string2[i];

i++;

}

string1[i] = '\0';

return;

}

A First Book of C++ 4th Edition 12

C-String Processing (cont'd.)

• Main features of function strcopy()

– The two strings are passed to strcopy as arrays

– Each element of string2 is assigned to the

equivalent element of string1 until end-of-string

marker is encountered

– Detection of NULL character forces termination of the

while loop that controls the copying of elements

– Because NULL character is not copied from string2

to string1, the last statement in strcopy()

appends an end-of-string character to string1

A First Book of C++ 4th Edition 13

C-String Processing (cont'd.)

• C-strings can be processed by using character-by-

character techniques

• Program 15.3 uses cin.get() to accept a string

one character at a time

– Code lines 8 – 14 replace cin.getline() function

used in Program 10.1

– Characters will be read and stored in message array,

provided:

• Number of characters is less than 81

• Newline character is not encountered

A First Book of C++ 4th Edition 14

Pointers and C-String Library Functions

• Pointers are very useful in constructing functions

that manipulate C-strings

• When pointers are used in place of subscripts to

access individual C-string characters, resulting

statements are more compact and efficient

• Consider strcopy() function (slide 12)

– Two modifications are necessary before converting to

a pointer version…

A First Book of C++ 4th Edition 15

Pointers and C-String Library Functions

(cont'd.)

• Modification 1: eliminate (string2[i] != ‘\0’)

test from while statement

– This statement is only false when end-of-string

character is encountered

– Test can be replaced by (string2[i])

• Modification 2: include assignment inside test
portion of while statement

– Eliminates need to terminate copied string with NULL

character

A First Book of C++ 4th Edition 16

Pointers and C-String Library Functions

(cont'd.)

• Pointer version of strcopy()

void strcopy(char *string1, char *string2)

{

while (*string1 = *string2)

{

string1++;

string2++;

}

return;

}

A First Book of C++ 4th Edition 17

Library Functions

• C++ does not provide built-in operations for

complete arrays (such as array assignments)

• Assignment and relational operations are not

provided for C-strings

• Extensive collections of C-string handling functions

and routines are included with all C++ compilers

(Table 15.2)

– These functions and routines provide for C-string

assignment, comparison, and other operations

A First Book of C++ 4th Edition 18

Library Functions (cont'd.)

• Four most commonly used C-string library functions:

– strcpy(): copies a source C-string expression into

a destination C-string variable

• Example: strcpy(string1, "Hello World!")

copies source string literal "Hello World!" into
destination C-string variable string1

A First Book of C++ 4th Edition 19

Library Functions (cont'd.)

• strcat(): appends a string expression onto the

end of a C-string variable

– Example:

strcat(dest_string, " there World!")

• strlen(): returns the number of characters in its

C-string parameter (not including NULL character)

– Example: value returned by strlen("Hello

World!") is 12

A First Book of C++ 4th Edition 20

Library Functions (cont'd.)

• strcmp(): compares two C-string expressions for

equality

– When two C-strings are compared, individual

characters are compared a pair at a time

– If no differences are found, strings are equal

– If a difference is found, string with the first lower

character is considered the smaller string

– Example:

• "Hello" is greater than "Good Bye" (first 'H' in

Hello greater than first 'G' in Good Bye)

A First Book of C++ 4th Edition 21

Character-Handling Functions

• Provided by C++ compilers in addition to C-string

manipulation functions

• Prototypes for routines are contained in header file
cctype; should be included in any program that

uses them

A First Book of C++ 4th Edition 22

Conversion Functions

• Used to convert C-strings to and from integer and

double-precision data types

• Prototypes for routines contained in header file
cstdlib;

– cstdlib should be included in any program that

uses these routines

A First Book of C++ 4th Edition 23

Conversion Functions (cont'd.)

A First Book of C++ 4th Edition 24

C-String Definitions and Pointer Arrays

• The definition of a C-string automatically involves a
pointer

• Example: Definition char message1[80];

– Reserves storage for 80 characters

– Automatically creates a pointer constant, message1,
that contains the address of message1[0]

– Address associated with the pointer constant cannot
be changed

• It must always “point to” the beginning of the created
array

A First Book of C++ 4th Edition 25

C-String Definitions and Pointer Arrays

(cont'd.)

• Also possible to create C-string using a pointer

– Example: Definition char *message2; creates a

pointer to a character

– message2 is a true pointer variable

• Once a pointer to a character is defined, assignment
statements, such as message2 = "this is a

string";, can be made

– message2, which is a pointer, receives address of

the first character in the string

A First Book of C++ 4th Edition 26

C-String Definitions and Pointer Arrays

(cont'd.)

• Main difference in the definitions of message1 as an

array and message2 as a pointer is the way the

pointer is created

• char message1[80]explicitly calls for a fixed

amount of storage for the array

– Compiler creates a pointer constant

• char *message2 explicitly creates a pointer

variable first

– Pointer holds the address of a C-string when the C-

string is actually specified

A First Book of C++ 4th Edition 27

C-String Definitions and Pointer Arrays

(cont'd.)

• Defining message2 as a pointer to a character

allows C-string assignments

message2 = "this is a string"; is valid

• Similar assignments not allowed for C-strings

defined as arrays

message1 = "this is a string"; is not valid

• Both definitions allow initializations using string

literals such as:

char message1[80] = "this is a string";

char *message2 = "this is a string";

A First Book of C++ 4th Edition 28

C-String Definitions and Pointer Arrays

(cont'd.)

• Allocation of space for message1 is different from

that for message2

• Both initializations cause computer to store the

same C-string internally (Figure 15.5)

• message1 storage:

– Specific set of 80 storage locations reserved; first 17

locations initialized

– Different C-strings can be stored, but each string

overwrites previously stored characters

• Same is not true for message2

A First Book of C++ 4th Edition 29

C-String Definitions and Pointer Arrays

(cont'd.)

• Definition of message2 reserves enough storage for

one pointer

– Initialization then causes the string literal to be stored

in memory

• Address of the string’s first character (‘t’) is loaded

into the pointer

– If a later assignment is made to message2, the initial

C-string remains in memory; new storage locations

are allocated to new C-string (Figure 10.6)

A First Book of C++ 4th Edition 30

A First Book of C++ 4th Edition 31

C-String Definitions and Pointer Arrays

(cont'd.)

A First Book of C++ 4th Edition 32

Pointer Arrays

• Declaration of an array of character pointers is an

extremely useful extension to single string pointer

declarations

– Declaration char *seasons[4]; creates an array of

four elements; each element is a pointer to a character

• Each pointer can be assigned to point to a string

using string assignment statements
seasons[0] = "Winter";

seasons[1] = "Spring";

seasons[2] = "Summer";

seasons[3] = "Fall";

// note: string lengths may differ

A First Book of C++ 4th Edition 33

Pointer Arrays (cont'd.)

• The seasons array does not contain actual strings

assigned to the pointers (Figure 15.7)

– Strings stored in data area allocated to the program

• Array of pointers contains only the addresses of the

starting location for each string

• Initializations of the seasons array can also be put

within array definition:
char *seasons[4] = {"Winter",

"Spring",

"Summer",

"Fall"};

A First Book of C++ 4th Edition 34

Pointer Arrays (cont'd.)

A First Book of C++ 4th Edition 35

Common Programming Errors

• Using a pointer to point to a nonexistent data

element

• Not providing enough storage for a C-string to be

stored

• Misunderstanding of terminology

– Example: If text is defined as char *text;

• Variable text is sometimes called a string

• text is not a string; it is a pointer that contains the

address of the first character in the C-string

A First Book of C++ 4th Edition 36

Summary

• A C-string is an array of characters that is
terminated by the NULL character

• C-strings can always be processed using standard

array-processing techniques

• The cin, cin.get(), and cin.getline()

routines can be used to input a C-string

• The cout object can be used to display C-strings

• Pointer notation and pointer arithmetic are useful for

manipulating C-string elements

A First Book of C++ 4th Edition 37

Summary (cont'd.)

• Many standard library functions exist for processing

C-strings as a complete unit

• C-string storage can be created by declaring an

array of characters or by declaring and initializing a

pointer to a character

• Arrays can be initialized using a string literal

assignment of the form:
char *arr_name[] = "text";

– This initialization is equivalent to:

char *arr_name[] = {'t','e','x','t','\0'};

• A pointer to a character can be assigned a string

literal
A First Book of C++ 4th Edition 38

