A First Book of C++

Chapter 15
Strings as Character Arrays

Objectives

* In this chapter, you will learn about:
— C-String Fundamentals
— Pointers and C-String Library Functions
— C-String Definitions and Pointer Arrays
— Common Programming Errors

A First Book of C++ 4th Edition

C-String Fundamentals

« Character strings (C-strings): using an array of
characters that is terminated by a sentinel value (the
escape sequence '\0')

« C-strings can be created in a number of ways:

— char test[>] = “abcd”;

— char test[] = “abcd”;

— char test[b] = {'a', 'b', 'c¢', '4d’',
"\O"'};

— char test[] = {'a', 'b', 'c¢', 'd’',
"\O"'};

A First Book of C++ 4th Edition 3

C-String Fundamentals (cont'd.)

« Array of characters terminated by a special end-of-
string marker called the NULL character

— This character is a sentinel marking the end of the
string

— The NULL character is represented by the escape
sequence,\ 0

 Individual characters in a string array can be input,
manipulated, or output using standard array-
handling techniques

A First Book of C++ 4th Edition

C-String Input and Output

 Inputting and displaying a string requires a standard
library function or class method.:

— cin and cout (standard input and output streams)

— String and character I/O functions (Table 15.1)
* Require the iostream header file

« Character input methods are not the same as
methods defined for the string class having the

same name

« Character output methods are the same as for
string class

A First Book of C++ 4th Edition

Table 15.1 String and Character I/O Methods (Require the Header File iostream)

C++ Method

Description

Example

cin.getline(str,n,ch)

Inputs a C-string (str)
from the keyboard, up to a
maximum of n characters,
that's terminated by the
character ch (typically the
newline character, '\n")

cin.getline(str, 81, '\n');

ter from the input stream
without extracting the
character from the stream

cin.get() Extracts the next character | nextKey = cin.get();
from the input stream
cin.peek() Returns the next charac- nextKey = cin.peek();

cout.put(charExp)

Places the character value
of charExp on the output
stream

cout.put('A');

cin.putback(charExp)

Pushes the character value
of charExp back onto the
input stream

cin.putback(cKey);

cin.ignore(n, char)

lgnores a maximum of the
next n input characters,
up to and including the
detection of char; if no
arguments are specified,
ignores the next single
character on the input
stream

cin.ignore (80, '\n');cin.ignore();

A First Book of C++ 4th Edition

C-String Input and Output (cont'd.)

Program 15.1

#include <iostream>
using namespace std;

int main ()
{
const int MAXCHARS = 81;
char message [MAXCHARS]; // an array of characters with
// enough storage for a complete line
cout << "Enter a string:\n";
cin.getline(message, MAXCHARS, '\n');
cout << "The string just entered is:\n"
<< message << endl;

return 0;

A First Book of C++ 4th Edition

C-String Input and Output (cont'd.)

* Program 15.1 illustrates using cin.getline () and
cout to Input and output a string entered at the
user’'s terminal

— Sample run of Program 15.1:

Enter a string:
This 1s a test i1nput of a string of characters.
The string just entered 1s:

This 1s a test i1nput of a string of characters.

A First Book of C++ 4th Edition 8

C-String Input and Output (cont'd.)

* The cin.getline () method in Program 15.1
continuously accepts and stores characters into
character array named message

— Input continues until:
 Either 80 characters are entered
« The ENTER key is detected

A First Book of C++ 4th Edition

C-String Input and Output (cont'd.)

* In Program 15.1, all characters encountered by
cin.getline (), except newline character, are

stored In message array

« Before returning, cin.getline () function
appends a NULL character, '\0', to the stored set

of characters (Figure 15.2)
« cout object is used to display the C-string

A First Book of C++ 4th Edition

10

C-String Processing

« C-strings can be manipulated by using either
standard library functions or as subscripted array
variables

— Library functions are presented in the next section

* First look at processing a string in a character-by-
character fashion

— Example: strcopy () copies contents of string2 to
stringl

A First Book of C++ 4th Edition 11

C-String Processing (cont'd.)

* Function strcopy ()

// copy string2 to stringl
vold strcopy(char stringl[],
{
int 1 = 0;
while (string2[i] != '\O0")
{
stringl[1] = string2[i];
i++;
}
stringl[i] = '\0O';
return;

}

A First Book of C++ 4th Edition

char string2[])

12

C-String Processing (cont'd.)

* Main features of function strcopy ()
— The two strings are passed to strcopy as arrays

— Each element of string?2 is assigned to the
equivalent element of stringl until end-of-string

marker iIs encountered

— Detection of NULIL character forces termination of the
while loop that controls the copying of elements

— Because NULL character is not copied from string?2
to stringl, the last statement in strcopy ()
appends an end-of-string character to stringl

A First Book of C++ 4th Edition 13

C-String Processing (cont'd.)

« C-strings can be processed by using character-by-
character technigues
 Program 15.3 uses cin.get () to accept a string
one character at a time
— Code lines 8 — 14 replace cin.getline () function
used in Program 10.1
— Characters will be read and stored in message array,
provided:
« Number of characters is less than 81
* Newline character is not encountered

A First Book of C++ 4th Edition 14

Pointers and C-String Library Functions

* Pointers are very useful in constructing functions
that manipulate C-strings

* When pointers are used in place of subscripts to
access individual C-string characters, resulting
statements are more compact and efficient

» Consider strcopy () function (slide 12)

— Two modifications are necessary before converting to
a pointer version...

A First Book of C++ 4th Edition 15

Pointers and C-String Library Functions
(cont'd.)

* Modification 1: eliminate (string2[i] != ‘\0’)
test from while statement

— This statement is only false when end-of-string
character is encountered

— Test can be replaced by (string2[i])

* Modification 2: include assignment inside test
portion of while statement

— Eliminates need to terminate copied string with NULL
character

A First Book of C++ 4th Edition 16

Pointers and C-String Library Functions

(cont'd.)
* Pointer version of strcopy ()

vold strcopy(char *stringl, char *string2?)

{
while (*stringl = *string2)
{
stringl++;
string2++;
}

return;

A First Book of C++ 4th Edition

17

Library Functions

« C++ does not provide built-in operations for
complete arrays (such as array assignments)

« Assignment and relational operations are not
provided for C-strings

« Extensive collections of C-string handling functions
and routines are included with all C++ compilers
(Table 15.2)

— These functions and routines provide for C-string
assignment, comparison, and other operations

A First Book of C++ 4th Edition

18

Library Functions (cont'd.)

* Four most commonly used C-string library functions:
— strcpy (). copies a source C-string expression into
a destination C-string variable

« Example: strcpy (stringl, "Hello World!")

copies source string literal "Hello World!" into
destination C-string variable stringl

A First Book of C++ 4th Edition 19

Library Functions (cont'd.)

« strcat ():appends a string expression onto the
end of a C-string variable
— Example:
strcat (dest string, " there World!")

« strlen ():returns the number of characters in its
C-string parameter (not including NULL character)

— Example: value returned by strlen ("Hello
World!"™) is 12

A First Book of C++ 4th Edition 20

Library Functions (cont'd.)

« strcmp (). compares two C-string expressions for
equality
— When two C-strings are compared, individual
characters are compared a pair at a time
— If no differences are found, strings are equal

— If a difference is found, string with the first lower
character is considered the smaller string

— Example:

« "Hello" Is greater than "Good Bye" (first 'H' In
Hello greater than first 'G' in Good Bye)

A First Book of C++ 4th Edition

Character-Handling Functions

* Provided by C++ compilers in addition to C-string
manipulation functions

* Prototypes for routines are contained in header file
cctype; should be included in any program that

uses them

A First Book of C++ 4th Edition 22

Conversion Functions

* Used to convert C-strings to and from integer and
double-precision data types

* Prototypes for routines contained in header file
cstdlib;

- cstdlib should be included in any program that
uses these routines

A First Book of C++ 4th Edition 23

Conversion Functions (cont'd.)

Table 15.4 String Conversion Functions (Require the Header File cstdlib)

Function Prototype

Description

Example

int atoi(stringExp)

Converts stringExp (an
ASCII string) to an integer.
Conversion stops at the first
non-integer character.

atoi("1234")

double atof(stringExp)

Converts stringExp (an
ASCII string) to a double-
precision number. Conversion
stops at the first character
that can’t be interpreted as a
double.

atof ("12.34")

char[] itoa(integerExp)

Converts integerExp (an
integer) to a character array.
The space allocated for the
returned characters must be
large enough for the con-
verted value.

itoa(1234)

A First Book of C++ 4th Edition

24

C-String Definitions and Pointer Arrays

* The definition of a C-string automatically involves a
pointer

« Example: Definition char messagel[80];

— Reserves storage for 80 characters

— Automatically creates a pointer constant, messagel,
that contains the address of messagel [0]

— Address associated with the pointer constant cannot
be changed

* It must always “point to” the beginning of the created
array

A First Book of C++ 4th Edition 25

C-String Definitions and Pointer Arrays
(cont'd.)

« Also possible to create C-string using a pointer

— Example: Definition char *message2; creates a
pointer to a character

— message?2 IS a true pointer variable

* Once a pointer to a character is defined, assignment
statements, such as message2 = "this is a

string";, can be made

- message?2, Which is a pointer, receives address of
the first character in the string

A First Book of C++ 4th Edition 26

C-String Definitions and Pointer Arrays
(cont'd.)

* Main difference in the definitions of messagel as an
array and message?2 as a pointer is the way the

pointer is created

« char messagel [80]explicitly calls for a fixed
amount of storage for the array
— Compiler creates a pointer constant

« char *message?2 explicitly creates a pointer
variable first

— Pointer holds the address of a C-string when the C-
string is actually specified

A First Book of C++ 4th Edition 27

C-String Definitions and Pointer Arrays
(cont'd.)

* Defining message?2 as a pointer to a character
allows C-string assignments

message?2 = "this is a string"; isvalid

« Similar assignments not allowed for C-strings
defined as arrays
messagel = "this is a string"; IS not valid

* Both definitions allow initializations using string
literals such as:
char messagel[80] = "this 1s a string";

char *message?2 = "thils 1s a string";

A First Book of C++ 4th Edition 28

C-String Definitions and Pointer Arrays
(cont'd.)

 Allocation of space for messagel Is different from
that for message?

* Both initializations cause computer to store the
same C-string internally (Figure 15.5)
e messagel Storage:

— Specific set of 80 storage locations reserved; first 17
locations initialized

— Different C-strings can be stored, but each string
overwrites previously stored characters

e Same is not true for message?2

A First Book of C++ 4th Edition 29

C-String Definitions and Pointer Arrays
(cont'd.)

* Definition of message?2 reserves enough storage for
one pointer
— Initialization then causes the string literal to be stored

IN memory
« Address of the string’s first character (‘t’) is loaded
Into the pointer
— If a later assighment is made to message?2, the initial

C-string remains in memory; new storage locations
are allocated to new C-string (Figure 10.6)

A First Book of C++ 4th Edition 30

S i s a s t \O
messagel = smessage[0] = address of first array location
a. Storage allocation for a C-string defined as an array
messagel
Starting

string address
Somewhere in memory:

t h i s i s a S t \O

?

—— Address of first character location

b. Storage of a C-string using a pointer

Figure 15.5 C-string storage allocation

A First Book of C++ 4th Edition

31

C-String Definitions and Pointer Arrays

message?2 is a pointer variable

(cont'd.)

An address
First the
address
points L h | i i \ 0
here —Ff
The address of this location is initially stored in message?2
Then the
address is
changed to A n \ O

point here —»

The address of this location is then stored in message2

I

Figure 15.6 Storage allocation for Figure 15.5

A First Book of C++ 4th Edition

32

Pointer Arrays

* Declaration of an array of character pointers is an
extremely useful extension to single string pointer
declarations

— Declaration char *seasons[4]; creates an array of
four elements; each element is a pointer to a character

« Each pointer can be assigned to point to a string
using string aSS|gnment statements

seasons[0] = "Winter";
seasons[1l] = "Spring";
seasons[2] = "Summer";
seasons[3] = "Fall";

// note: string lengths may differ

A First Book of C++ 4th Edition 33

Pointer Arrays (cont'd.)

 The seasons array does not contain actual strings
assigned to the pointers (Figure 15.7)
— Strings stored in data area allocated to the program

 Array of pointers contains only the addresses of the
starting location for each string

* Initializations of the seasons array can also be put
within array definition:

char *seasons[4] = {"Winter",
"Spring",
"Summer",
"Fall"};

A First Book of C++ 4th Edition 34

seasons[0]:

seasons[1l]:

seasons[2]:

seasons[3]:

Pointer Arrays (cont'd.)

seasons array

Somewhere in memory:

Address of -
W in Winter g * o t © \O
Address of
Address of |
S in Summer ﬁx&aﬁhﬁ““ﬂahxhhh
Address of
Fin Fall “\ S|{u|m|m|e \ 0
F a 1 1 | \O

Figure 15.7 The addresses in the seasons[] pointers

A First Book of C++ 4th Edition

35

Common Programming Errors

« Using a pointer to point to a nonexistent data
element

* Not providing enough storage for a C-string to be
stored

« Misunderstanding of terminology
— Example: If text is defined as char *text;

« Variable text Is sometimes called a string

* text IS not a string; it Is a pointer that contains the
address of the first character in the C-string

A First Book of C++ 4th Edition 36

Summary

« A C-string Is an array of characters that is
terminated by the NULL character

e C-strings can always be processed using standard
array-processing techniques

* The cin, cin.get (),and cin.getline ()
routines can be used to input a C-string

 The cout object can be used to display C-strings

* Pointer notation and pointer arithmetic are useful for
manipulating C-string elements

A First Book of C++ 4th Edition 37

Summary (cont'd.)

« Many standard library functions exist for processing
C-strings as a complete unit

« C-string storage can be created by declaring an
array of characters or by declaring and initializing a
pointer to a character

« Arrays can be initialized using a string literal
assignment of the form:

char *arr_name[] = "text";

— This initialization is equivalent to:

char *arr_name[] ={t','e",'x','t',"\0'};
A pointer to a character can be assigned a string
literal

A First Book of C++ 4th Edition 38

