
A First Book of C++

Chapter 7
Arrays

Objectives

• In this chapter, you will learn about:
– One-Dimensional Arrays

– Array Initialization

– Arrays as Arguments
– Two-Dimensional Arrays
– Common Programming Errors
– Searching and Sorting Methods

A First Book of C++ 4th Edition 2

One-Dimensional Arrays

• One-dimensional array (single-dimension array or
vector): a list of related values
– All items in list have same data type
– All list members stored using single group name

• Example: a list of grades
98, 87, 92, 79, 85

– All grades are integers and must be declared
• Can be declared as single unit under a common name

(the array name)

A First Book of C++ 4th Edition 3

One-Dimensional Arrays (cont'd.)

• Array declaration statement provides:
– The array (list) name

– The data type of array items

– The number of items in array

• Syntax
 dataType arrayName[numberOfItems]

– Common programming practice requires defining
number of array items as a constant before declaring
the array

A First Book of C++ 4th Edition 4

One-Dimensional Arrays (cont'd.)

• Examples of array declaration statements:

const int NUMELS = 5; // define a constant
 // for the number of
 // items

int amts[NUMELS]; // declare the array

const int NUMELS = 4;
char code[NUMELS];

const int SIZE = 100;
double amount[SIZE];

A First Book of C++ 4th Edition 5

One-Dimensional Arrays (cont'd.)

• Each array allocates sufficient memory to hold the
number of data items given in declaration

• Array element (component): an item of the array

• Individual array elements stored sequentially
– A key feature of arrays that provides a simple

mechanism for easily locating single elements

A First Book of C++ 4th Edition 6

One-Dimensional Arrays (cont'd.)

A First Book of C++ 4th Edition 7

One-Dimensional Arrays (cont'd.)

• Index (subscript value): position of individual
element in an array

• Accessing of array elements: done by giving array
name and element’s index
– grade[0] refers to first grade stored in grade array

• Subscripted variables can be used anywhere that
scalar variables are valid:
grade[0] = 95.75;
grade[1] = grade[0] - 11.0;

A First Book of C++ 4th Edition 8

One-Dimensional Arrays (cont'd.)

A First Book of C++ 4th Edition 9

One-Dimensional Arrays (cont'd.)

• Subscripts: do not have to be integers
– Any expression that evaluates to an integer may be

used as a subscript

– Subscript must be within the declared range

• Examples of valid subscripted variables (assumes i
and j are int variables):

grade[i]

grade[2*i]

grade[j-i]

A First Book of C++ 4th Edition 10

Input and Output of Array Values

• Individual array elements can be assigned values
interactively using a cin stream object

cin >> grade[0];
cin >> grade[1] >> grade[2] >> grade[3];
cin >> grade[4] >> prices[6];

• Instead, a for loop can be used
const int NUMELS = 5;
for (int i = 0; i < NUMELS; i++)
{
cout << "Enter a grade: ";
cin >> grade[i];

}

A First Book of C++ 4th Edition 11

Input and Output of Array Values
(cont'd.)

• Bounds checking: C++ does not check if value of
an index is within declared bounds

• If an out-of-bounds index is used, C++ will not
provide notification
– Program will attempt to access out-of-bounds

element, causing program error or crash

– Using symbolic constants helps avoid this problem

A First Book of C++ 4th Edition 12

Input and Output of Array Values
(cont'd.)

• Using cout to display subscripted variables:
– Example 1

 cout << prices[5];

– Example 2
 cout << "The value of element " << i << " is
" << grade[i];

– Example 3
const int NUMELS = 20;
for (int k = 5; k < NUMELS; k++)
cout << k << " " << amount[k];

A First Book of C++ 4th Edition 13

Input and Output of Array Values
(cont'd.)

• Program example of array I/O (Program 7.1):

#include <iostream>
using namespace std;
int main()
{

const int NUMELS = 5;
int i, grade[NUMELS];
for (i = 0; i < NUMELS; i++) // Enter the grades
{
cout << "Enter a grade: ";
cin >> grade[i];

}
cout << endl;
for (i = 0; i < NUMELS; i++) // Print the grades
cout << "grade [" << i << "] is " << grade[i] <<
endl;

return 0;
}

A First Book of C++ 4th Edition 14

Input and Output of Array Values
(cont'd.)

• Sample run using Program 7.1:

Enter a grade: 85
Enter a grade: 90
Enter a grade: 78
Enter a grade: 75
Enter a grade: 92

grade[0] is 85
grade[1] is 90
grade[2] is 78
grade[3] is 75
grade[4] is 92

A First Book of C++ 4th Edition 15

Array Initialization

• Array elements can be initialized within declaration
statements
– Initializing elements must be included in braces
– Example:
const int NUMGALS = 20;

int gallons[NUMGALS] =

{19, 16, 14, 19, 20, 18, // initializing values

 12, 10, 22, 15, 18, 17, // can extend across

 16, 14, 23, 19, 15, 18, // multiple lines

 21, 5};

A First Book of C++ 4th Edition 16

Array Initialization (cont'd.)

• Size of array may be omitted when initializing values
are included in declaration statement

• Example: the following are equivalent
const int NUMCODES = 6;
char code[6] = {'s', 'a', 'm', 'p', 'l', 'e'};

char code[] = {'s', 'a', 'm', 'p', 'l', 'e'};

• Both declarations set aside six character locations
for an array named code

A First Book of C++ 4th Edition 17

Array Initialization (cont'd.)

• Simplified method for initializing character arrays

 char codes[] = “sample”;
//no braces or commas

• This statement uses the string “sample” to initialize
the code array
– The array is comprised of seven characters
– The first six characters are the letters:

s, a, m, p, l, e
– The last character (the escape sequence \0) is called

the null character

A First Book of C++ 4th Edition 18

Array Initialization (cont'd.)

A First Book of C++ 4th Edition 19

Arrays as Arguments

• Array elements are passed to a called function in
same manner as individual scalar variables
– Example:

findMax(grades[2], grades[6]);

• Passing a complete array to a function provides
access to the actual array, not a copy
– Making copies of large arrays is wasteful of storage

A First Book of C++ 4th Edition 20

Arrays as Arguments (cont'd.)

• Examples of function calls that pass arrays:

int nums[5]; // an array of five integers

char keys[256]; // an array of 256 characters

double units[500], grades[500];// two arrays of
 // 500 doubles

• The following function calls can then be made:
findMax(nums);
findCharacter(keys);
calcTotal(nums, units, grades);

A First Book of C++ 4th Edition 21

Arrays as Arguments (cont'd.)

• Suitable receiving side function header lines:

int findMax(int vals[5])
char findCharacter(char inKeys[256])
void calcTotal(int arr1[5],
 double arr2[500],
double arr3[500])

A First Book of C++ 4th Edition 22

Arrays as Arguments (cont'd.)

• Example of passing arrays as arguments (Program
7.4):
– Constant MAXELS is declared globally
– Prototype for findMax() uses constant MAXELS to

declare that findMax() expects an array of five
integers as an argument

– As shown in Figure 7.5, only one array is created in
Program 7.4

• In main(), the array is known as nums
• In findMax(), it is known as vals

A First Book of C++ 4th Edition 23

A First Book of C++ 4th Edition 24

Arrays as Arguments (cont'd.)

A First Book of C++ 4th Edition 25

Two-Dimensional Arrays

• Two-dimensional array (table): consists of both
rows and columns of elements

• Example: two-dimensional array of integers
 8 16 9 52

 3 15 27 6

14 25 2 10

• Array declaration: names the array val and
reserves storage for it

int val[3][4];

A First Book of C++ 4th Edition 26

Two-Dimensional Arrays (cont'd.)

• Locating array elements (Figure 7.7)
– val[1][3] uniquely identifies element in row 1,

column 3

• Examples using elements of val array:
price = val[2][3];

val[0][0] = 62;

newnum = 4 * (val[1][0] - 5);

sumRow = val[0][0] + val[0][1] + val[0][2]
+ val[0][3];

– The last statement adds the elements in row 0 and
sum is stored in sumRow

A First Book of C++ 4th Edition 27

Two-Dimensional Arrays (cont'd.)

A First Book of C++ 4th Edition 28

Two-Dimensional Arrays (cont'd.)

• Initialization: can be done within declaration
statements (as with single-dimension arrays)

• Example:
int val[3][4] = { {8,16,9,52},

 {3,15,27,6},

 {14,25,2,10} };

– First set of internal braces contains values for row 0,
second set for row 1, and third set for row 2

– Commas in initialization braces are required; inner
braces can be omitted

A First Book of C++ 4th Edition 29

Two-Dimensional Arrays (cont'd.)

• Processing two-dimensional arrays: nested for loops
typically used
– Easy to cycle through each array element

• A pass through outer loop corresponds to a row
• A pass through inner loop corresponds to a column

– Nested for loop in Program 7.7 used to multiply each
val element by 10 and display results

• Output of Program 7.7
Display of multiplied elements
 80 160 90 520
 30 150 270 60
 140 250 20 100

A First Book of C++ 4th Edition 30

Two-Dimensional Arrays (cont'd.)

• Prototypes for functions that pass two-dimensional
arrays can omit the row size of the array
– Example (Program 7.8):

display (int nums[][4]);

– Row size is optional, but column size is required
• The element val[1][3] is located 28 bytes from the

start of the array (assuming 4 bytes for an int)

A First Book of C++ 4th Edition 31

Two-Dimensional Arrays (cont'd.)

• Determining offset of an array
– Computer uses row index, column index, and column

size to determine offset

A First Book of C++ 4th Edition 32

Two-Dimensional Arrays (cont'd.)

A First Book of C++ 4th Edition 33

Larger Dimensional Arrays

• Arrays with more than two dimensions allowed in C+
+ but not commonly used

• Example: int response[4][10][6]
– First element is response[0][0][0]
– Last element is response[3][9][5]

• A three-dimensional array can be viewed as a book
of data tables (Figure 7.10)
– First subscript (rank) is page number of table

– Second subscript is row in table

– Third subscript is desired column

A First Book of C++ 4th Edition 34

Larger Dimensional Arrays (cont'd.)

A First Book of C++ 4th Edition 35

Common Programming Errors

• Forgetting to declare an array
– Results in a compiler error message equivalent to

“invalid indirection” each time a subscripted variable is
encountered within a program

• Using a subscript that references a nonexistent
array element
– For example, declaring array to be of size 20 and

using a subscript value of 25
– Not detected by most C++ compilers and will probably

cause a runtime error

A First Book of C++ 4th Edition 36

Common Programming Errors (cont'd.)

• Not using a large enough counter value in a for
loop counter to cycle through all array elements

• Forgetting to initialize array elements
– Don’t assume compiler does this

A First Book of C++ 4th Edition 37

Summary

• One-dimensional array: a data structure that stores
a list of values of same data type
– Must specify data type and array size
– Example:
 int num[100]; creates an array of 100 integers

• Array elements are stored in contiguous locations in
memory and referenced using the array name and a
subscript
– Example: num[22]

A First Book of C++ 4th Edition 38

Summary (cont'd.)

• Two-dimensional array is declared by listing both a
row and column size with data type and name of
array

• Arrays may be initialized when they are declared
– For two-dimensional arrays, you list the initial values,

in a row-by-row manner, within braces and separating
them with commas

• Arrays are passed to a function by passing name of
array as an argument

A First Book of C++ 4th Edition 39

Chapter Supplement: Searching and
Sorting Methods

• Most programmers encounter the need to both sort
and search a list of data items at some time in their
programming careers

A First Book of C++ 4th Edition 40

Search Algorithms

• Linear (sequential) search
– Each item in the list is examined in the order in which

it occurs until the desired item is found or the end of
the list is reached

– List doesn’t have to be in sorted order to perform the
search

• Binary search
– Starting with an ordered list, the desired item is first

compared with the element in the middle of the list
– If item is not found, you continue the search on either

the first or second half of the list

A First Book of C++ 4th Edition 41

	A First Book of C++
	Objectives
	One-Dimensional Arrays
	One-Dimensional Arrays (cont'd.)
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Input and Output of Array Values
	Input and Output of Array Values (cont'd.)
	Slide 13
	Slide 14
	Slide 15
	Array Initialization
	Array Initialization (cont'd.)
	Slide 18
	Slide 19
	Arrays as Arguments
	Arrays as Arguments (cont'd.)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Two-Dimensional Arrays
	Two-Dimensional Arrays (cont'd.)
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Larger Dimensional Arrays
	Larger Dimensional Arrays (cont'd.)
	Common Programming Errors
	Common Programming Errors (cont'd.)
	Summary
	Summary (cont'd.)
	Chapter Supplement: Searching and Sorting Methods
	Search Algorithms

