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Objectives

• In this chapter, you will learn about:
– One-Dimensional Arrays

– Array Initialization

– Arrays as Arguments
– Two-Dimensional Arrays
– Common Programming Errors
– Searching and Sorting Methods
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One-Dimensional Arrays

• One-dimensional array (single-dimension array or 
vector): a list of related values 
– All items in list have same data type
– All list members stored using single group name

• Example: a list of grades
98, 87, 92, 79, 85

– All grades are integers and must be declared
• Can be declared as single unit under a common name 

(the array name)
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One-Dimensional Arrays (cont'd.)

• Array declaration statement provides:
– The array (list) name

– The data type of array items

– The number of items in array

• Syntax
   dataType arrayName[numberOfItems]

– Common programming practice requires defining 
number of array items as a constant before declaring 
the array
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One-Dimensional Arrays (cont'd.)

• Examples of array declaration statements:

const int NUMELS = 5; // define a constant 
   // for the number of
        // items

int amts[NUMELS];   // declare the array

const int NUMELS = 4;
char code[NUMELS];

const int SIZE = 100;
double amount[SIZE];
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One-Dimensional Arrays (cont'd.)

• Each array allocates sufficient memory to hold the 
number of data items given in declaration

• Array element (component): an item of the array

• Individual array elements stored sequentially
– A key feature of arrays that provides a simple 

mechanism for easily locating single elements
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One-Dimensional Arrays (cont'd.)
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One-Dimensional Arrays (cont'd.)

• Index (subscript value): position of individual 
element in an array

• Accessing of array elements: done by giving array 
name and element’s index 
– grade[0] refers to first grade stored in grade array

• Subscripted variables can be used anywhere that 
scalar variables are valid:
grade[0] = 95.75;
grade[1] = grade[0] - 11.0;
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One-Dimensional Arrays (cont'd.)
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One-Dimensional Arrays (cont'd.)

• Subscripts: do not have to be integers
– Any expression that evaluates to an integer may be 

used as a subscript

– Subscript must be within the declared range

• Examples of valid subscripted variables (assumes i 
and j are int variables):

grade[i]

grade[2*i]

grade[j-i]
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Input and Output of Array Values

• Individual array elements can be assigned values 
interactively using a cin stream object

cin >> grade[0];
cin >> grade[1] >> grade[2] >> grade[3];
cin >> grade[4] >> prices[6];

• Instead, a for loop can be used
const int NUMELS = 5;
for (int i = 0; i < NUMELS; i++)
{
cout << "Enter a grade: ";
cin >> grade[i];

}
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Input and Output of Array Values 
(cont'd.)

• Bounds checking: C++ does not check if value of 
an index is within declared bounds

• If an out-of-bounds index is used, C++ will not 
provide notification
– Program will attempt to access out-of-bounds 

element, causing program error or crash

– Using symbolic constants helps avoid this problem
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Input and Output of Array Values 
(cont'd.)

• Using cout to display subscripted variables:
– Example 1

 cout << prices[5];

– Example 2
 cout << "The value of element " << i << " is 
" << grade[i];

– Example 3
const int NUMELS = 20;
for (int k = 5; k < NUMELS; k++)
cout << k << " " << amount[k];
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Input and Output of Array Values 
(cont'd.)

• Program example of array I/O (Program 7.1): 

#include <iostream>
using namespace std;
int main()
{

const int NUMELS = 5;
int i, grade[NUMELS];
for (i = 0; i < NUMELS; i++) // Enter the grades
{
cout << "Enter a grade: ";
cin >> grade[i];

}
cout << endl;
for (i = 0; i < NUMELS; i++) // Print the grades
cout << "grade [" << i << "] is " << grade[i] << 
endl;

return 0;
}
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Input and Output of Array Values 
(cont'd.)

• Sample run using Program 7.1:

Enter a grade: 85
Enter a grade: 90
Enter a grade: 78
Enter a grade: 75
Enter a grade: 92

grade[0] is 85
grade[1] is 90
grade[2] is 78
grade[3] is 75
grade[4] is 92
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Array Initialization

• Array elements can be initialized within declaration 
statements
– Initializing elements must be included in braces
– Example:
const int NUMGALS = 20;

int gallons[NUMGALS] = 

{19, 16, 14, 19, 20, 18, // initializing values

 12, 10, 22, 15, 18, 17, // can extend across

 16, 14, 23, 19, 15, 18, // multiple lines

 21, 5};
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Array Initialization (cont'd.)

• Size of array may be omitted when initializing values 
are included in declaration statement

• Example: the following are equivalent
const int NUMCODES = 6;
char code[6] = {'s', 'a', 'm', 'p', 'l', 'e'};

char code[ ] = {'s', 'a', 'm', 'p', 'l', 'e'};

• Both declarations set aside six character locations 
for an array named code
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Array Initialization (cont'd.)

• Simplified method for initializing character arrays

  char codes[ ] = “sample”; 
//no braces or commas

• This statement uses the string “sample” to initialize 
the code array
– The array is comprised of seven characters
– The first six characters are the letters: 

s, a, m, p, l, e
– The last character (the escape sequence \0) is called 

the null character
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Array Initialization (cont'd.)
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Arrays as Arguments

• Array elements are passed to a called function in 
same manner as individual scalar variables
– Example:

findMax(grades[2], grades[6]);

• Passing a complete array to a function provides 
access to the actual array, not a copy
– Making copies of large arrays is wasteful of storage 
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Arrays as Arguments (cont'd.)

• Examples of function calls that pass arrays:

int nums[5]; // an array of five integers

char keys[256];   // an array of 256 characters

double units[500], grades[500];// two arrays of  
       // 500 doubles

• The following function calls can then be made:
findMax(nums);
findCharacter(keys);
calcTotal(nums, units, grades);
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Arrays as Arguments (cont'd.)

• Suitable receiving side function header lines:

int findMax(int vals[5])
char findCharacter(char inKeys[256])
void calcTotal(int arr1[5], 
               double arr2[500], 
double arr3[500])
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Arrays as Arguments (cont'd.)

• Example of passing arrays as arguments (Program 
7.4):
– Constant MAXELS is declared globally
– Prototype for findMax() uses constant MAXELS to 

declare that findMax() expects an array of five 
integers as an argument

– As shown in Figure 7.5, only one array is created in 
Program 7.4

• In main(), the array is known as nums
• In findMax(), it is known as vals

A First Book of C++ 4th Edition 23



A First Book of C++ 4th Edition 24



Arrays as Arguments (cont'd.)
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Two-Dimensional Arrays

• Two-dimensional array (table): consists of both 
rows and columns of elements

• Example: two-dimensional array of integers
  8 16  9 52

 3  15 27  6

14  25    2 10

• Array declaration: names the array val and 
reserves storage for it

int val[3][4];
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Two-Dimensional Arrays (cont'd.)

• Locating array elements (Figure 7.7) 
– val[1][3] uniquely identifies element in row 1, 

column 3

• Examples using elements of val array:
price = val[2][3];

val[0][0] = 62;

newnum = 4 * (val[1][0] - 5);

sumRow = val[0][0] + val[0][1] + val[0][2] 
+ val[0][3];

– The last statement adds the elements in row 0 and 
sum is stored in sumRow
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Two-Dimensional Arrays (cont'd.)
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Two-Dimensional Arrays (cont'd.)

• Initialization: can be done within declaration 
statements (as with single-dimension arrays)

• Example:
int val[3][4] = { {8,16,9,52},

         {3,15,27,6},

         {14,25,2,10} };

– First set of internal braces contains values for row 0, 
second set for row 1, and third set for row 2

– Commas in initialization braces are required; inner 
braces can be omitted
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Two-Dimensional Arrays (cont'd.)

• Processing two-dimensional arrays: nested for loops 
typically used
– Easy to cycle through each array element

• A pass through outer loop corresponds to a row
• A pass through inner loop corresponds to a column

– Nested for loop in Program 7.7 used to multiply each 
val element by 10 and display results

• Output of Program 7.7
Display of multiplied elements
   80  160   90  520
  30  150  270   60
 140  250   20  100
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Two-Dimensional Arrays (cont'd.)

• Prototypes for functions that pass two-dimensional 
arrays can omit the row size of the array
– Example (Program 7.8): 

display (int nums[ ][4]);

– Row size is optional, but column size is required
• The element val[1][3] is located 28 bytes from the 

start of the array (assuming 4 bytes for an int)
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Two-Dimensional Arrays (cont'd.)

• Determining offset of an array
– Computer uses row index, column index, and column 

size to determine offset
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Two-Dimensional Arrays (cont'd.)
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Larger Dimensional Arrays

• Arrays with more than two dimensions allowed in C+
+ but not commonly used

• Example: int response[4][10][6]
– First element is response[0][0][0]
– Last element is response[3][9][5]

• A three-dimensional array can be viewed as a book 
of data tables (Figure 7.10)
– First subscript (rank) is page number of table

– Second subscript is row in table

– Third subscript is desired column
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Larger Dimensional Arrays (cont'd.)
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Common Programming Errors

• Forgetting to declare an array 
– Results in a compiler error message equivalent to 

“invalid indirection” each time a subscripted variable is 
encountered within a program

• Using a subscript that references a nonexistent 
array element
– For example, declaring array to be of size 20 and 

using a subscript value of 25
– Not detected by most C++ compilers and will probably 

cause a runtime error
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Common Programming Errors (cont'd.)

• Not using a large enough counter value in a for 
loop counter to cycle through all array elements

• Forgetting to initialize array elements
– Don’t assume compiler does this
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Summary

• One-dimensional array: a data structure that stores 
a list of values of same data type 
– Must specify data type and array size
– Example:
 int num[100]; creates an array of 100 integers

• Array elements are stored in contiguous locations in 
memory and referenced using the array name and a 
subscript
– Example: num[22]
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Summary (cont'd.)

• Two-dimensional array is declared by listing both a 
row and column size with data type and name of 
array

• Arrays may be initialized when they are declared
– For two-dimensional arrays, you list the initial values, 

in a row-by-row manner, within braces and separating 
them with commas

• Arrays are passed to a function by passing name of 
array as an argument
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Chapter Supplement: Searching and 
Sorting Methods

• Most programmers encounter the need to both sort 
and search a list of data items at some time in their 
programming careers
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Search Algorithms

• Linear (sequential) search
– Each item in the list is examined in the order in which 

it occurs until the desired item is found or the end of 
the list is reached

– List doesn’t have to be in sorted order to perform the 
search

• Binary search
– Starting with an ordered list, the desired item is first 

compared with the element in the middle of the list
– If item is not found, you continue the search on either 

the first or second half of the list
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