
A First Book of C++

Chapter 6
Modularity Using Functions

Objectives

• In this chapter, you will learn about:
– Function and Parameter Declarations

– Returning a Single Value

– Returning Multiple Values
– Variable Scope
– Variable Storage Class
– Common Programming Errors

– Generating Random Numbers

A First Book of C++ 4th Edition 2

Function and Parameter Declarations

• All C++ programs must contain a main() function
– May also contain unlimited additional functions

• Major programming concerns when creating
functions:
– How does a function interact with other functions

(including main)?
– Correctly passing data to function
– Correctly returning values from a function

A First Book of C++ 4th Edition 3

Function and Parameter Declarations
(cont'd.)

• Function call process:
– Give function name

– Pass data to function as arguments in parentheses
following function name

• Only after called function receives data successfully
can the data be manipulated within the function

A First Book of C++ 4th Edition 4

Function and Parameter Declarations
(cont'd.)

A First Book of C++ 4th Edition 5

A First Book of C++ 4th Edition 6

Function and Parameter Declarations
(cont'd.)

Function and Parameter Declarations
(cont'd.)

• Program 6.1 not complete
– findMax() must be written and added

• Done in slide 15

• Complete program components:
– main(): referred to as calling function
– findMax(): referred to as called function

• Complete program can be compiled and executed

A First Book of C++ 4th Edition 7

Function Prototypes

• Function prototype: declaration statement for a
function
– Before a function can be called, it must be declared to

the calling function
– Tells the calling function:

• The type of value to be returned, if any

• The data type and order of values the calling function
should transmit to the called function

A First Book of C++ 4th Edition 8

Function Prototypes (cont'd.)

• Example: the function prototype in Program 6.1
void findMax(int, int);

– Declares that findMax() expects two integer values
sent to it

– findMax() returns no value (void)
• Prototype statement placement options:

– Together with variable declaration statements just
above calling function name (as in Program 6.1)

– In a separate header file to be included using a
#include preprocessor statement

A First Book of C++ 4th Edition 9

A First Book of C++ 4th Edition 10

Calling a Function

A First Book of C++ 4th Edition 11

Calling a Function (cont'd.)

Defining a Function

• A function is defined when it is written
– Can then be used by any other function that suitably

declares it
• Format: two parts

– Function header identifies:
• Data type returned by the function
• Function name
• Number, order, and type of arguments expected by the

function
– Function body: statements that operate on data

• Returns one value back to the calling function

A First Book of C++ 4th Edition 12

A First Book of C++ 4th Edition 13

Defining a Function (cont'd.)

A First Book of C++ 4th Edition 14

Defining a Function (cont'd.)

findMax() function definition (from Program 6.1)

A First Book of C++ 4th Edition 15

void findMax (int x, int y)
{ // start of function body
 int maxnum; // variable declaration
 if (x >= y) // find the maximum number
 maxnum = x;
 else
 maxnum = y;
 cout << "\nThe maximum of the two numbers is "

 <<maxnum<< endl;
return;

} // end of function body and end of function

Defining a Function (cont'd.)

• Order of functions in a program:
– Any order is allowed
– main() usually first

• main() is the driver function

• Gives reader overall program concept before details of
each function encountered

• Each function defined outside any other function
– Each function separate and independent

– Nesting functions is never permitted

A First Book of C++ 4th Edition 16

Placement of Statements

• Requirement: items that must be either declared or
defined before they are used:

• Preprocessor directives

• Named constants

• Variables

• Functions

• Otherwise, C++ is flexible in requirements for
ordering of statements

A First Book of C++ 4th Edition 17

Placement of Statements (cont'd.)

• Recommended ordering of statements
– Good programming practice

A First Book of C++ 4th Edition 18

preprocessor directives
function prototypes
int main()
{

// symbolic constants
// variable declarations
// other executable statements
// return value

}
// function definitions

Function Stubs

• Possible programming approach:
– Write main() first and add functions as developed
– Program cannot be run until all functions are included

• Stub: beginning of a final function
– Can be used as a placeholder for a function until the

function is completed

– A “fake” function that accepts parameters and returns
values in proper form

– Allows main to be compiled and tested before all
functions are completed

A First Book of C++ 4th Edition 19

Functions with Empty Parameter Lists

• Extremely limited use
• Prototype format:

int display ();

int display (void);

• Information provided in above prototypes:
– display takes no parameters
– display returns an integer

A First Book of C++ 4th Edition 20

Default Arguments

• Values listed in function prototype
– Automatically transmitted to the called function when

the arguments are omitted from function call

• Example:
void example (int, int = 5, double = 6.78);

– Provides default values for last two arguments
– Following function calls are valid:

example(7, 2, 9.3) // no defaults used

example(7, 2) // same as example(7, 2, 6.78)

example(7) // same as example(7, 5, 6.78)

A First Book of C++ 4th Edition 21

A First Book of C++ 4th Edition 22

Reusing Function Names (Overloading)

• Function overloading: using same function name
for more than one function
– Compiler must be able to determine which function to

use based on data types of parameters (not data type
of return value)

• Each function must be written separately
– Each exists as a separate entity

• Use of same name does not require code to be
similar
– Good programming practice: functions with the same

name perform similar operations

Reusing Function Names (Overloading)
(cont'd.)

Example: two functions named cdabs()
void cdabs(int x) // compute and display the absolute

//value of an integer
{
 if (x < 0)
 x = -x;
 cout << "The absolute value of the integer is " << x <<

endl;
}
void cdabs(float x) // compute and display the

 //absolute value of a float
{
 if (x < 0)
 x = -x;
 cout << "The absolute value of the float is " << x <<

endl;
}

A First Book of C++ 4th Edition 23

Reusing Function Names (Overloading)
(cont'd.)

• Function call: cdabs(10);
– Causes compiler to use the function named cdabs()

that expects and integer argument

• Function call: cdabs(6.28f);
– Causes compiler to use the function named cdabs()

that expects a double-precision argument

• Major use of overloaded functions
– Constructor functions

A First Book of C++ 4th Edition 24

Function Templates

• Most high-level languages require each function to
be coded separately
– Can lead to a profusion of names

• Example: functions to find the absolute value
– Three separate functions and prototypes required

void abs (int);

void fabs (float);

void dabs (double);

• Each function performs the same operation
– Only difference is data type handled

A First Book of C++ 4th Edition 25

Function Templates (cont'd.)

• Example of function template:
template <class T>
void showabs(T number)
{
 if (number < 0)
 number = -number;
 cout << "The absolute value of the number "
 << " is " << number << endl;
 return;
}

• Template allows for one function instead of three
– T represents a general data type
– T replaced by an actual data type when compiler

encounters a function call

A First Book of C++ 4th Edition 26

Function Templates (cont'd.)

• Example (cont'd.):
int main()
{

int num1 = -4;
float num2 = -4.23F;
double num3 = -4.23456;
showabs(num1);
showabs(num2);
showabs(num3);
return 0;

}
• Output from above program:

The absolute value of the number is 4
The absolute value of the number is 4.23
The absolute value of the number is 4.23456

A First Book of C++ 4th Edition 27

Returning a Single Value

• Passing data to a function:
– Called function receives only a copy of data sent to it

– Protects against unintended change

– Passed arguments called pass by value arguments
– A function can receive many values (arguments) from

the calling function

A First Book of C++ 4th Edition 28

A First Book of C++ 4th Edition 29

Returning a Single Value (cont'd.)

• Returning data from a function
– Only one value directly returned from function
– Called function header indicates type of data returned

• Examples:
void findMax(int x, int y)

• findMax accepts two integer parameters and returns no
value
float findMax (float x, float y)

• findMax accepts two floating-point values and returns a
floating-point value

• To return a value, a function must use a return
statement

Inline Functions

• Calling functions associated overhead
– Placing arguments in reserved memory (stack)

– Passing control to the function

– Providing stack space for any returned value
– Returning to correct point in calling program

• Overhead justified when function is called many
times
– Better than repeating code

A First Book of C++ 4th Edition 30

Inline Functions (cont'd.)

• Overhead not justified for small functions that are
not called frequently
– Still convenient to group repeating lines of code into a

common function name

• Inline function: avoids overhead problems
– C++ compiler instructed to place a copy of inline

function code into the program wherever the function
is called

A First Book of C++ 4th Edition 31

A First Book of C++ 4th Edition 32

Templates with a Return Value

• Returning a value from a function template is
identical to returning a value from a function

• Data type T is also used to declare the return type of
the function

A First Book of C++ 4th Edition 33

A First Book of C++ 4th Edition 34

A First Book of C++ 4th Edition 35

Returning Multiple Values

• Called function usually receives values as pass by
value
– A distinct advantage of C++

• Sometimes desirable to allow function to have direct
access to variables
– Address of variable must be passed to function
– Function can directly access and change the value

stored there

• Pass by reference: passing addresses of variables
received from calling function

A First Book of C++ 4th Edition 36

Passing and Using Reference
Parameters

• Reference parameter: receives the address of an
argument passed to called function

• Example: accept two addresses in function
newval()

• Function header:
void newval (double& num1, double& num2)

– Ampersand, &, means “the address of”

• Function prototype:
void newval (double&, double&);

Variable Scope

• Scope: section of program where identifier is valid
(known or visible)

• Local variables (local scope): variables created
inside a function
– Meaningful only when used in expressions inside the

function in which it was declared

• Global variables (global scope): variables created
outside any function
– Can be used by all functions placed after the global

variable declaration

A First Book of C++ 4th Edition 37

Scope Resolution Operator

• Local variable with the same name as a global
variable
– All references to variable name within scope of local

variable refer to the local variable
– Local variable name takes precedence over global

variable name

• Scope resolution operator (::)
– When used before a variable name, the compiler is

instructed to use the global variable
::number // scope resolution operator
 // causes global variable to be used

A First Book of C++ 4th Edition 38

Misuse of Globals

• Avoid overuse of globals
– Too many globals eliminates safeguards provided by

C++ to make functions independent

– Misuse does not apply to function prototypes
• Prototypes are typically global

• Difficult to track down errors in a large program
using globals
– Global variable can be accessed and changed by any

function following the global declaration

A First Book of C++ 4th Edition 39

Variable Storage Category

• Scope has a space and a time dimension
• Time dimension (lifetime): length of time that storage

locations are reserved for a variable
– All variable storage locations released back to

operating system when program finishes its run
– During program execution, interim storage locations

are reserved
• Storage category: determines length of time that

variable’s storage locations are reserved

• Four classes: auto, static, extern, register

A First Book of C++ 4th Edition 40

Local Variable Storage Categories

• Local variable can only be members of auto,
static, or register class

• auto class: default, if no class description included
in variable’s declaration statement

• Storage for auto local variables automatically
reserved (created)
– Each time a function declaring auto variables is

called
– Local auto variables are “alive” until function returns

control to calling function

A First Book of C++ 4th Edition 41

Local Variable Storage Categories
(cont'd.)

• static storage class: allows a function to
remember local variable values between calls
– static local variable lifetime = lifetime of program
– Value stored in variable when function is finished is

available to function next time it is called

• Initialization of static variables (local and global)
– Done one time only, when program first compiled
– Only constants or constant expressions allowed

A First Book of C++ 4th Edition 42

Local Variable Storage Categories
(cont'd.)

A First Book of C++ 4th Edition 43

Local Variable Storage Categories
(cont'd.)

• register storage class: same as auto class
except for location of storage for class variables
– Uses high-speed registers
– Can be accessed faster than normal memory areas

• Improves program execution time

• Some computers do not support register class
– Variables automatically switched to auto class

A First Book of C++ 4th Edition 44

Global Variable Storage Classes

• Global variables: created by definition statements
external to a function
– Do not come and go with the calling of a function
– Once created, a global variable is alive until the

program in which it is declared finishes executing

– May be declared as members of static or extern
classes

• Purpose: to extend the scope of a global variable
beyond its normal boundaries

A First Book of C++ 4th Edition 45

Common Programming Errors

• Passing incorrect data types between functions
– Values passed must correspond to data types declared

for function parameters

• Declaring same variable name in calling and called
functions
– A change to one local variable does not change value

in the other

• Assigning same name to a local and a global variable
– Use of a variable’s name only affects local variable’s

contents unless the :: operator is used

A First Book of C++ 4th Edition 46

Common Programming Errors (cont'd.)

• Omitting a called function’s prototype
– The calling function must be alerted to the type of

value that will be returned

• Terminating a function’s header line with a
semicolon

• Forgetting to include the data type of a function’s
parameters within the function header line

A First Book of C++ 4th Edition 47

Summary

• A function is called by giving its name and passing
data to it
– If a variable is an argument in a call, the called

function receives a copy of the variable’s value

• Common form of a user-written function:
returnDataType functionName(parameter list)
{
 declarations and other C++ statements;

 return expression;
 }

A First Book of C++ 4th Edition 48

Summary (cont'd.)

• A function’s return type is the data type of the value
returned by the function
– If no type is declared, the function is assumed to

return an integer value
– If the function does not return a value, it should be

declared as a void type

• Functions can directly return at most a single data
type value to their calling functions
– This value is the value of the expression in the
return statement

A First Book of C++ 4th Edition 49

Summary (cont'd.)

• Reference parameter: passes the address of a
variable to a function

• Function prototype: function declaration

• Scope: determines where in a program the variable
can be used

• Variable storage category: determines how long the
value in a variable will be retained

A First Book of C++ 4th Edition 50

Chapter Supplement: Generating
Random Numbers

• Random numbers
– Series of numbers whose order can’t be predicted

– In practice, finding truly random numbers is hard

• Pseudorandom numbers
– Random enough for the type of applications being

programmed

• All C++ compilers provide two general-purpose
functions for generating random numbers
– rand() and srand()

A First Book of C++ 4th Edition 51

Scaling

• Scaling
– Procedure for adjusting the random numbers produced

by a random-number generator to fall in a specified
range

• Scaling random numbers to lie in the range 0.0 to 1.0
double(rand())/RAND_MAX

• Scaling a random number as an integer value
between 0 and N

rand() % (N+1)

int(double(rand())/RAND_MAX * N)

A First Book of C++ 4th Edition 52

	A First Book of C++
	Objectives
	Function and Parameter Declarations
	Function and Parameter Declarations (cont'd.)
	Slide 5
	Slide 6
	Slide 7
	Function Prototypes
	Function Prototypes (cont'd.)
	Calling a Function
	Calling a Function (cont'd.)
	Defining a Function
	Defining a Function (cont'd.)
	Slide 14
	Slide 15
	Slide 16
	Placement of Statements
	Placement of Statements (cont'd.)
	Function Stubs
	Functions with Empty Parameter Lists
	Default Arguments
	Reusing Function Names (Overloading)
	Reusing Function Names (Overloading) (cont'd.)
	Slide 24
	Function Templates
	Function Templates (cont'd.)
	Slide 27
	Returning a Single Value
	Returning a Single Value (cont'd.)
	Inline Functions
	Inline Functions (cont'd.)
	Slide 32
	Templates with a Return Value
	Slide 34
	Returning Multiple Values
	Passing and Using Reference Parameters
	Variable Scope
	Scope Resolution Operator
	Misuse of Globals
	Variable Storage Category
	Local Variable Storage Categories
	Local Variable Storage Categories (cont'd.)
	Slide 43
	Slide 44
	Global Variable Storage Classes
	Common Programming Errors
	Common Programming Errors (cont'd.)
	Summary
	Summary (cont'd.)
	Slide 50
	Chapter Supplement: Generating Random Numbers
	Scaling

