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Chapter 6
Modularity Using Functions



Objectives

• In this chapter, you will learn about:
– Function and Parameter Declarations

– Returning a Single Value

– Returning Multiple Values
– Variable Scope
– Variable Storage Class
– Common Programming Errors

– Generating Random Numbers
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Function and Parameter Declarations

• All C++ programs must contain a main() function
– May also contain unlimited additional functions

• Major programming concerns when creating 
functions: 
– How does a function interact with other functions 

(including main)?
– Correctly passing data to function
– Correctly returning values from a function
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Function and Parameter Declarations 
(cont'd.)

• Function call process:  
– Give function name

– Pass data to function as arguments in parentheses 
following function name

• Only after called function receives data successfully 
can the data be manipulated within the function
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Function and Parameter Declarations 
(cont'd.)
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Function and Parameter Declarations 
(cont'd.)



Function and Parameter Declarations 
(cont'd.)

• Program 6.1 not complete
– findMax() must be written and added 

• Done in slide 15

• Complete program components:
– main(): referred to as calling function
– findMax(): referred to as called function 

• Complete program can be compiled and executed
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Function Prototypes

• Function prototype: declaration statement for a 
function
– Before a function can be called, it must be declared to 

the calling function
– Tells the calling function:

• The type of value to be returned, if any

• The data type and order of values the calling function 
should transmit to the called function
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Function Prototypes (cont'd.)

• Example: the function prototype in Program 6.1
void findMax(int, int);

– Declares that findMax() expects two integer values 
sent to it

– findMax() returns no value (void)
• Prototype statement placement options:

– Together with variable declaration statements just 
above calling function name (as in Program 6.1)

– In a separate header file to be included using a 
#include preprocessor statement
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Calling a Function
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Calling a Function (cont'd.)



Defining a Function

• A function is defined when it is written
– Can then be used by any other function that suitably 

declares it
• Format: two parts

– Function header identifies: 
• Data type returned by the function
• Function name
• Number, order, and type of arguments expected by the 

function
– Function body: statements that operate on data

• Returns one value back to the calling function
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Defining a Function (cont'd.)
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Defining a Function (cont'd.)

findMax() function definition (from Program 6.1)
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void findMax (int x, int y)
{       // start of function body
      int maxnum; // variable declaration
      if (x >= y) // find the maximum number
        maxnum = x;
      else
        maxnum = y;
      cout << "\nThe maximum of the two numbers is " 

     <<maxnum<< endl;
return;

} // end of function body and end of function



Defining a Function (cont'd.)

• Order of functions in a program:
– Any order is allowed
– main() usually first

• main() is the driver function

• Gives reader overall program concept before details of 
each function encountered

• Each function defined outside any other function
– Each function separate and independent

– Nesting functions is never permitted
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Placement of Statements

• Requirement: items that must be either declared or 
defined before they are used:

• Preprocessor directives

• Named constants

• Variables

• Functions

• Otherwise, C++ is flexible in requirements for 
ordering of statements
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Placement of Statements (cont'd.)

• Recommended ordering of statements
– Good programming practice
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preprocessor directives
function prototypes
int main()
{

// symbolic constants
// variable declarations
// other executable statements
// return value

}
// function definitions



Function Stubs

• Possible programming approach:
– Write main() first and add functions as developed
– Program cannot be run until all functions are included

• Stub: beginning of a final function
– Can be used as a placeholder for a function until the 

function is completed

– A “fake” function that accepts parameters and returns 
values in proper form

– Allows main to be compiled and tested before all 
functions are completed
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Functions with Empty Parameter Lists

• Extremely limited use
• Prototype format:

int display ();

int display (void);

• Information provided in above prototypes:
– display takes no parameters
– display returns an integer
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Default Arguments

• Values listed in function prototype
– Automatically transmitted to the called function when 

the arguments are omitted from function call

• Example:
void example (int, int = 5, double = 6.78);

– Provides default values for last two arguments
– Following function calls are valid:

example(7, 2, 9.3) // no defaults used

example(7, 2) // same as example(7, 2, 6.78)

example(7) // same as example(7, 5, 6.78)
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Reusing Function Names (Overloading)

• Function overloading: using same function name 
for more than one function
– Compiler must be able to determine which function to 

use based on data types of parameters (not data type 
of return value)

• Each function must be written separately
– Each exists as a separate entity

• Use of same name does not require code to be 
similar
– Good programming practice: functions with the same 

name perform similar operations 



Reusing Function Names (Overloading) 
(cont'd.)

Example: two functions named cdabs()
void cdabs(int x) // compute and display the absolute   

//value of an integer
{
   if ( x < 0 )
      x = -x;
   cout << "The absolute value of the integer is " << x << 

endl;
}
void cdabs(float x) // compute and display the 

  //absolute value of a float
{
   if ( x < 0 )
      x = -x;
   cout << "The absolute value of the float is " << x << 

endl;
}
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Reusing Function Names (Overloading) 
(cont'd.)

• Function call: cdabs(10);
– Causes compiler to use the function named cdabs() 

that expects and integer argument

• Function call: cdabs(6.28f);
– Causes compiler to use the function named cdabs() 

that expects a double-precision argument

• Major use of overloaded functions
– Constructor functions
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Function Templates

• Most high-level languages require each function to 
be coded separately
– Can lead to a profusion of names

• Example: functions to find the absolute value
– Three separate functions and prototypes required

void abs (int);

void fabs (float);

void dabs (double);

• Each function performs the same operation
– Only difference is data type handled
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Function Templates (cont'd.)

• Example of function template:
template <class T>
void showabs(T number)
{
   if (number < 0)
      number = -number;
   cout << "The absolute value of the number "
           << " is " << number << endl;
   return;
}

• Template allows for one function instead of three
– T represents a general data type
– T replaced by an actual data type when compiler 

encounters a function call 
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Function Templates (cont'd.)

• Example (cont'd.): 
int main()
{

int num1 = -4;
float num2 = -4.23F;
double num3 = -4.23456;
showabs(num1);
showabs(num2);
showabs(num3);
return 0;

}
• Output from above program:

The absolute value of the number is 4
The absolute value of the number is 4.23
The absolute value of the number is 4.23456
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Returning a Single Value

• Passing data to a function:
– Called function receives only a copy of data sent to it

– Protects against unintended change

– Passed arguments called pass by value arguments
– A function can receive many values (arguments) from 

the calling function
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Returning a Single Value (cont'd.)

• Returning data from a function
– Only one value directly returned from function
– Called function header indicates type of data returned

• Examples:
void findMax(int x, int y)

• findMax accepts two integer parameters and returns no 
value
float findMax (float x, float y)

• findMax accepts two floating-point values and returns a 
floating-point value

• To return a value, a function must use a return 
statement



Inline Functions

• Calling functions associated overhead
– Placing arguments in reserved memory (stack)

– Passing control to the function

– Providing stack space for any returned value
– Returning to correct point in calling program

• Overhead justified when function is called many 
times
– Better than repeating code
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Inline Functions (cont'd.)

• Overhead not justified for small functions that are 
not called frequently
– Still convenient to group repeating lines of code into a 

common function name

• Inline function: avoids overhead problems 
– C++ compiler instructed to place a copy of inline 

function code into the program wherever the function 
is called
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Templates with a Return Value

• Returning a value from a function template is 
identical to returning a value from a function

• Data type T is also used to declare the return type of 
the function
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Returning Multiple Values

• Called function usually receives values as pass by 
value 
– A distinct advantage of C++ 

• Sometimes desirable to allow function to have direct 
access to variables
– Address of variable must be passed to function
– Function can directly access and change the value 

stored there

• Pass by reference: passing addresses of variables 
received from calling function 
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Passing and Using Reference 
Parameters

• Reference parameter: receives the address of an 
argument passed to called function

• Example: accept two addresses in function 
newval() 

• Function header:
void newval (double& num1, double& num2)

– Ampersand, &,  means “the address of”

• Function prototype:
void newval (double&, double&);



Variable Scope

• Scope: section of program where identifier is valid 
(known or visible)

• Local variables (local scope): variables created 
inside a function
– Meaningful only when used in expressions inside the 

function in which it was declared

• Global variables (global scope): variables created 
outside any function
– Can be used by all functions placed after the global 

variable declaration
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Scope Resolution Operator

• Local variable with the same name as a global 
variable
– All references to variable name within scope of local 

variable refer to the local variable
– Local variable name takes precedence over global 

variable name

• Scope resolution operator (::) 
– When used before a variable name, the compiler is 

instructed to use the global variable
::number   // scope resolution operator
  // causes global variable to be used
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Misuse of Globals

• Avoid overuse of globals
– Too many globals eliminates safeguards provided by 

C++ to make functions independent

– Misuse does not apply to function prototypes 
• Prototypes are typically global

• Difficult to track down errors in a large program 
using globals
– Global variable can be accessed and changed by any 

function following the global declaration 

A First Book of C++ 4th Edition 39



Variable Storage Category

• Scope has a space and a time dimension
• Time dimension (lifetime): length of time that storage 

locations are reserved for a variable
– All variable storage locations released back to 

operating system when program finishes its run
– During program execution, interim storage locations 

are reserved
• Storage category: determines length of time that 

variable’s storage locations are reserved

• Four classes: auto, static, extern, register 
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Local Variable Storage Categories

• Local variable can only be members of auto, 
static, or register class

• auto class: default, if no class description included 
in variable’s declaration statement

• Storage for auto local variables automatically 
reserved (created) 
– Each time a function declaring auto variables is 

called
– Local auto variables are “alive” until function returns 

control to calling function
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Local Variable Storage Categories 
(cont'd.)

• static storage class: allows a function to 
remember local variable values between calls
– static local variable lifetime = lifetime of program
– Value stored in variable when function is finished is 

available to function next time it is called 

• Initialization of static variables (local and global)
– Done one time only, when program first compiled
– Only constants or constant expressions allowed

A First Book of C++ 4th Edition 42



Local Variable Storage Categories 
(cont'd.)
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Local Variable Storage Categories 
(cont'd.)

• register storage class: same as auto class 
except for location of storage for class variables
– Uses high-speed registers
– Can be accessed faster than normal memory areas

• Improves program execution time

• Some computers do not support register class
– Variables automatically switched to auto class
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Global Variable Storage Classes

• Global variables: created by definition statements 
external to a function
– Do not come and go with the calling of a function
– Once created, a global variable is alive until the 

program in which it is declared finishes executing

– May be declared as members of static or extern 
classes

• Purpose: to extend the scope of a global variable 
beyond its normal boundaries
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Common Programming Errors

• Passing incorrect data types between functions
– Values passed must correspond to data types declared 

for function parameters

• Declaring same variable name in calling and called 
functions
– A change to one local variable does not change value 

in the other

• Assigning same name to a local and a global variable
– Use of a variable’s name only affects local variable’s 

contents unless the :: operator is used
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Common Programming Errors (cont'd.)

• Omitting a called function’s prototype
– The calling function must be alerted to the type of 

value that will be returned

• Terminating a function’s header line with a 
semicolon

• Forgetting to include the data type of a function’s 
parameters within the function header line
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Summary

• A function is called by giving its name and passing 
data to it
– If a variable is an argument in a call, the called 

function receives a copy of the variable’s value

• Common form of a user-written function:
returnDataType functionName(parameter list)
{
  declarations and other C++ statements;

     return expression;
  }
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Summary (cont'd.)

• A function’s return type is the data type of the value 
returned by the function
– If no type is declared, the function is assumed to 

return an integer value 
– If the function does not return a value, it should be 

declared as a void type

• Functions can directly return at most a single data 
type value to their calling functions
– This value is the value of the expression in the 
return statement
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Summary (cont'd.)

• Reference parameter: passes the address of a 
variable to a function

• Function prototype: function declaration

• Scope: determines where in a program the variable 
can be used

• Variable storage category: determines how long the 
value in a variable will be retained
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Chapter Supplement: Generating 
Random Numbers

• Random numbers
– Series of numbers whose order can’t be predicted

– In practice, finding truly random numbers is hard

• Pseudorandom numbers
– Random enough for the type of applications being 

programmed

• All C++ compilers provide two general-purpose 
functions for generating random numbers
– rand() and srand()
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Scaling

• Scaling
– Procedure for adjusting the random numbers produced 

by a random-number generator to fall in a specified 
range

• Scaling random numbers to lie in the range 0.0 to 1.0
double(rand())/RAND_MAX

• Scaling a random number as an integer value 
between 0 and N

rand() % (N+1)

int(double(rand())/RAND_MAX * N)
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